How sin 3A = 3SinA - 4Sin³A?
How sin 3A = 3SinA - 4Sin³A?
Sin(3A) = Sin(2A +A)
As we know that
then,
➡Sin(2A + A) = Sin2A CosA + Cos2A SinA
also,
{ Sin(2A) = 2 SinA CosA }.........(1)
{ Cos(2A) = Cos²A - Sin²A }......(2)
Put the value of (1) and (2) in formula
➡Sin(2A + A) = (2 SinA CosA)CosA + (Cos²A - Sin²A)SinA
also, Cos²A = 1 - Sin²A
➡Sin(2A + A) = 2 SinA Cos²A + (Cos²A - Sin²A)SinA
➡Sin(2A + A) = 2 SinA (1- Sin²A) + (1- Sin²A -Sin²A) SinA
➡Sin(2A + A) = 2 SinA (1- Sin²A) + (1- 2Sin²A) SinA
➡Sin(2A + A)= 2 SinA - 2Sin³A + SinA - 2Sin³A
➡ Hence, Sin(2A + A)= 3SinA - 4Sin³A
Comments
Post a Comment
Comment here