How Sin(2A) = 2SinA CosA or Sin(A) = 2Sin(A/2) Cos(A/2) ?

Derivation of 
Sin(2A) = 2 SinA CosA
or
Sin(A) = 2Sin(A/2) Cos(A/2)?

As we know that,
⇒Sin(A+B) = SinA CosB + CosA SinB
👉👉(Sin(A+B) = SinA CosB + CosA SinB)

put B= A
then,
⇒Sin(A+A) = SinA CosA + CosA SinA
  
⇒Sin(2A) = SinA CosA + SinA CosA

Hence, Sin(2A) = 2SinA CosA

⇒If angle will be halfed i.e. θ = A

⇒Hence,
      Sin(A) = 2Sin(A/2) Cos(A/2)

Comments

Popular posts from this blog

Trigonometric values w.r.t. Quadrants (1st, 2nd, 3rd and 4th)

How Sin²Î¸ + Cos²Î¸ = 1?