How Cos(2A) = Cos²A - Sin²A or Cos(A) = Cos²(A/2) - Sin²(A/2) ?

Derivation of Cos(2A) = Cos²A - Sin²A
or
Cos(A) = Cos²(A/2) - Sin²(A/2)?

As we know that,
Cos(A+B) = CosA CosB - SinA SinB

put B= A 
we get,
⇒Cos(A+A) = CosA CosA - SinA SinA

⇒Hence, Cos(2A) = Cos²A - Sin²A

⇒If angle will be halved i.e. θ = A
Then,
     ⇒ Cos(A) = Cos²(A/2) - Sin²(A/2)

Comments

Post a Comment

Comment here

Popular posts from this blog

Trigonometric values w.r.t. Quadrants (1st, 2nd, 3rd and 4th)

How Sin²θ + Cos²θ = 1?