How tan(π/4-θ) = (1−tanθ)/(1+tanθ) ?

Derivation of
tan(π/4-θ) = (1−tanθ)/(1+tanθ)

As, tan(π/4+θ) = (1+tanθ)/(1-tanθ)

{Put θ= -θ}

tan(π/4-θ) =
[1 + tan(-θ)] /[1- tan(-θ)]
        { As tan(-θ) = -tanθ }

Hence,
tan(π/4-θ) = (1-tanθ)/(1+tanθ)

Comments

Popular posts from this blog

Trigonometric values w.r.t. Quadrants (1st, 2nd, 3rd and 4th)

How Sin²θ + Cos²θ = 1?