Posts
How Cos 2θ = (1 - tan²θ)/ (1 + tan²θ) ?
- Get link
- X
- Other Apps
By
Anand Kumar Upadhyay
-
How Sin 2θ = (2 tanθ)/(1+ tan²θ) ?
- Get link
- X
- Other Apps
By
Anand Kumar Upadhyay
-
How tan (3A) = (3tanA - tan³A)/(1-3tan²A)?
- Get link
- X
- Other Apps
By
Anand Kumar Upadhyay
-
How tan (2A) = (2 tan A)/ (1- tan²A) ?
- Get link
- X
- Other Apps
By
Anand Kumar Upadhyay
-
Cos (3A) = 4 Cos³A - 3 CosA
- Get link
- X
- Other Apps
By
Anand Kumar Upadhyay
-
How sin 3A = 3SinA - 4Sin³A?
- Get link
- X
- Other Apps
By
Anand Kumar Upadhyay
-
How sin 3A = 3SinA - 4Sin³A? Sin(3A) = Sin(2A +A) As we know that Sin(A+B) = SinA CosB + CosA SinB then, ➡Sin(2A + A) = Sin2A CosA + Cos2A SinA also, { Sin(2A) = 2 SinA CosA } .........(1) { Cos(2A) = Cos²A - Sin²A } ......(2) Put the value of (1) and (2) in formula ➡Sin(2A + A) = (2 SinA CosA)CosA + (Cos²A - Sin²A)SinA also, Cos²A = 1 - Sin²A ➡Sin(2A + A) = 2 SinA Cos²A + (Cos²A - Sin²A)SinA ➡Sin(2A + A) = 2 SinA (1- Sin²A) + (1- Sin²A -Sin²A) SinA ➡Sin(2A + A) = 2 SinA (1- Sin²A) + (1- 2Sin²A) SinA ➡Sin(2A + A)= 2 SinA - 2Sin³A + SinA - 2Sin³A ➡ Hence, Sin(2A + A)= 3SinA - 4Sin³A
How 1 + Cos (2A) = 2 Cos²A ?
- Get link
- X
- Other Apps
By
Anand Kumar Upadhyay
-
How Cos (2A) = 2 Cos²A - 1 ? As we know that ➡ Cos(2A) = Cos²A - Sin²A .......(1) Also Sin²A + Cos²A = 1 or Sin²A = 1 - Cos²A......[put in (1) eq.] ➡Cos (2A) = Cos²A - (1 - Cos²A) = Cos²A - 1 + Cos²A Hence, Cos (2A) = 2 Cos²A - 1 or 1 + Cos(2A) = 2 Cos²A ➡ If angle is half i.e. θ = A then, Cos (A) = 2 Cos²(A/2) - 1 or 1 + Cos(A) = 2 Cos²(A/2)
How 1 - Cos(2A) = 2Sin²A?
- Get link
- X
- Other Apps
By
Anand Kumar Upadhyay
-
How 1 - Cos2A = 2 sin²A? As we know that, Cos(2A) = Cos²A - Sin²A.........(1) ........👉{ Cos(2A) = Cos²A - Sin²A } also, Sin²A + Cos²A = 1 or Cos²A = 1- Sin²A......(2) ...............👉{ How Sin²θ + Cos²θ = 1?? } put eq. (2) into eq.(1) Cos(2A) = 1 - Sin²A - Sin²A Hence, Cos(2A) = 1 - Sin²A also, 1 - Cos2A = 2 sin²A If angle(ϴ) is halved, then, CosA = 1 - Sin²(A/2) or 1 - CosA = 2 sin²(A/2)
How Cos(2A) = Cos²A - Sin²A or Cos(A) = Cos²(A/2) - Sin²(A/2) ?
- Get link
- X
- Other Apps
By
Anand Kumar Upadhyay
-
Derivation of Cos(2A) = Cos²A - Sin²A or Cos(A) = Cos²(A/2) - Sin²(A/2) ? As we know that, Cos(A+B) = CosA CosB - SinA SinB ........👉👉{ Cos(A+B) = CosA CosB - SinA SinB } put B= A we get, ⇒Cos(A+A) = CosA CosA - SinA SinA ⇒Hence, Cos(2A) = Cos²A - Sin²A ⇒If angle will be halved i.e. θ = A Then, ⇒ Cos(A) = Cos²(A/2) - Sin²(A/2)
How Sin(2A) = 2SinA CosA or Sin(A) = 2Sin(A/2) Cos(A/2) ?
- Get link
- X
- Other Apps
By
Anand Kumar Upadhyay
-
Derivation of Sin(2A) = 2 SinA CosA or Sin(A) = 2Sin(A/2) Cos(A/2)? As we know that, ⇒Sin(A+B) = SinA CosB + CosA SinB 👉👉( Sin(A+B) = SinA CosB + CosA SinB ) put B= A then, ⇒Sin(A+A) = SinA CosA + CosA SinA ⇒Sin(2A) = SinA CosA + SinA CosA Hence, Sin(2A) = 2SinA CosA ⇒If angle will be halfed i.e. θ = A ⇒Hence, Sin(A) = 2Sin(A/2) Cos(A/2)
How tan(π/4-θ) = (1−tanθ)/(1+tanθ) ?
- Get link
- X
- Other Apps
By
Anand Kumar Upadhyay
-
How tan(π/4+θ) = (1+tanθ)/(1-tanθ) ?
- Get link
- X
- Other Apps
By
Anand Kumar Upadhyay
-
How tan(A-B) = (tanA - tanB)/(1+ tanA tanB) ?
- Get link
- X
- Other Apps
By
Anand Kumar Upadhyay
-
How tan(A+B) = (tanA + tanB)/(1- tanA tanB) ?
- Get link
- X
- Other Apps
By
Anand Kumar Upadhyay
-
(Trigonometry Value Table) Values of Trigonometric ratios
- Get link
- X
- Other Apps
By
Anand Kumar Upadhyay
-
👉 These are the values of trigonometric Ratios:- 👆 Picture showing values of sinθ,cosθ,tanθ where θ is the some angle. From the table values of Cosecant (Cosec), Secant(sec) and Cotangent (Cot) can be determined. As, Cosecθ = 1/Sinθ Secθ = 1/cosθ and Cotθ = 1/tanθ or cosθ/sinθ 👉 What is Trigonometry? 👉 What is a right angled triangle?
Trigonometric Ratios
- Get link
- X
- Other Apps
By
Anand Kumar Upadhyay
-
Trigonometric Ratios :- There are only six possible ratios of sides of a right angled triangle. In Trigonometry, different names are given to those ratios of right angled triangle w.r.t. angle ∠θ These are the ratios:- {1}. P/H :- Sine (sin) {2}. B/H :- Cosine (Cos) {3}. P/B :- tangent (tan) {4}. H/P :- Cosecant (cosec) {5}. H/B :- Secant (Sec) {6}. B/P :- Cotangent (Cot) where P :- Perpendicular B:- Base H:- Hypotenuse source: Wikipedia Some simple identities : ⇒tanϴ = 1/ cotϴ or sinϴ/ cosϴ ⇒Cosecϴ = 1/ sinϴ ⇒Secϴ = 1/ cosϴ ⇒Cotϴ = 1 / tanϴ or cosϴ/ sinϴ 👉👉 What is Trigonometry? 👉👉 Trigonometry Table (Values of Trigonometric ratios) 👉👉 How Sin²θ + Cos²θ = 1?
How Cos(A-B) = CosA CosB + SinA SinB ?
- Get link
- X
- Other Apps
By
Anand Kumar Upadhyay
-
How Cos(A+B) = CosA CosB - SinA SinB ?
- Get link
- X
- Other Apps
By
Anand Kumar Upadhyay
-
How Sin(A-B) = SinA CosB- CosA SinB
- Get link
- X
- Other Apps
By
Anand Kumar Upadhyay
-
How Sin(A+B) = SinA CosB + CosA SinB ?
- Get link
- X
- Other Apps
By
Anand Kumar Upadhyay
-
How Sin²θ + Cos²θ = 1?
- Get link
- X
- Other Apps
By
Anand Kumar Upadhyay
-
How Sin²θ + Cos²θ = 1...?? According to Pythagoras theorem, "the square of hypotenuse(H) is equal to the sum of square of base(B) and perpendicular(P)" i.e. H² = B² + P² (Dividing both sides by H²) we get, H²/H² = B²/H² + P²/H² 1 = Sin²θ + Cos²θ ....(B/H = sinθ and P/H = cosθ) Hence, Sin²θ + Cos²θ = 1 How Sin²θ + Cos²θ = 1?
What is a Right angled triangle?
- Get link
- X
- Other Apps
By
Anand Kumar Upadhyay
-
Right angled triangle : Right angled triangle is a triangle in which one angle is a right angle (that is, a 90-degree angle). # The relation between the sides and angles of the right angled is the basis for trigonometry. # Pythagoras Theorem states that The square of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of other two sides.
Trigonometric values w.r.t. Quadrants (1st, 2nd, 3rd and 4th)
- Get link
- X
- Other Apps
By
Anand Kumar Upadhyay
-
👉Important Rules for trigonometric values in 1st ,2nd ,3rd and 4th Quadrant. {1}. Quadrant 1st: (90°-θ) and (360°+θ) All Trigonometric values are Positive (+). {2}. Quadrant 2nd : (90°+θ) and (180°-θ) Only values of sine (sin) and Cosecant (cosec) is positive (+) rest all Trigonometric values are negative (-). {3}. Quadrant 3rd: (180°+θ) and (270°-θ) Only values of tangent (tan) and Cotangent (cot) is positive (+) rest all Trigonometric values are negative (-). {4} . Quadrant 4th : (270°+θ) and (360° -θ) Only values of cosine (cos) and Secant (sec) is positive (+) rest all Trigonometric values are negative (-). 👇 The picture showing the values of all Trigonometric ratios in different quadrants :- # A Simple Way to remember A DD : All values positive S UGAR : Sine,Cosine are positive T O : Tan, cot are positive C OFEE : cos ,sec are positive